
Compressing
Floating-Point Number Stream

for Numerical Applications

Hisanobu Tomari, Mary Inaba, Kei Hiraki
The University of Tokyo

Recent Computing Systems
● Accelerators (e.g. GRAPE-DR, GPGPU) and

cluster systems are widely used
● Inexpensive
● High performance
● Low power consumption

Bandwidth bottleneck
● e.g. Ethernet for cluster
● PCI-express for accelerator
● Processor becomes idle while waiting data

Example of the problem
● Matrix multiplication on GRAPE-DR
● FFT on 8-node cluster (Gigabit Ethernet)

GRAPE-DR Cluster
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Communication
Other

Breakdown of execution time

Memory Wall problem to
Network Wall problem

● Memory Wall: Barrier between processor and
memory speed goes larger [Wulf+, 95]
● #I/O pads limited in a chip
● Processor still becomes faster

● Same constraints also apply to
interconnection

Existing Methods
● Increase cache size

● Dataset is unlikely to be reused in accelerators or
cluster systems

● Modify algorithms so that it fit
narrow-bandwidth systems
● Not always possible or wanted

Our proposal: Compression
● Compress data to transfer
● Add pair of compressor/decompressor to

each end of data channel

ReceiverDecompressor
Software or
Hardware

Compressor
Software or
Hardware

Sender Compressed

Design issues
● Use software or hardware to increase

bandwidth
● Only small software modification needed
● Adds small extra latency
● High bandwidth compression required

● Current compression algorithms are too slow
– Gzip, Bzip2

Compression of
floating point numbers

● Scientific programs transfer floating-point
numbers
● Input and output of board almost exclusively fp

numbers on accelerators
● Many scientific simulations transfer double-

precision fp numbers between nodes or boards

Floating Point Number Format
● IEEE 754-2008 double-precision FP number

exponent mantissa
v=−1

s
⋅2exponent−offset

⋅1.mantissa

 1 11 52
S

Redundancy in notation of
FP Numbers

● Exponent parts in array take similar values in
real-world simulation applications

● Too distant exponent parts lead to loss of
significant digits

Example: 3.1E256 + 1.3E0 = 3.1E256Lost digits

Our algorithm: MAF
● Compress sign and exponent part
● Leave mantissa part unmodified
● Can be implemented on hardware
● Compress 4 FP numbers together

● Increases compression ratio

exponent mantissa
 1 11 52

S

Compressed Sign and Exponent
Formats

● Keep recently sent sign and exponent parts in
memory
● data=history[map[i]] 0≦i<0xF
● data=history[map[i]]+diff 0≦i,diff<0xF
● otherwise

i

0xF i diff

0xF 0xF

Exploit locality in data structure
● Search history memory for similar value

● Use look-up table to map 4-bit compressed
address to 6-bit history buffer address

● Designed to match multi-dimensional
structures in applications

History Buffer(6b address)

4bit → 6bit
mapCompressed

History buffer
Reference(4b)

Example of locality: matrix
● Similar value to the red value is expected at

yellow places
● Exact size of the data is unknown

Compression: Overlapping
● Compress next segment while sending a

segment
● Sending/Compressing overlapped

Send #1 Send #2 Send #3 Send #4
Compress #2 Compress #3 Compress #4 Compress #5

Time

Decompression (Format 1)
If a record starts with nibble(4b) 0x0-0xE then
it's in format 1
● Read history memory
● Concatenate with mantissa parts
● Keep sign and exponent part in history memory

i
0xF i diff
0xF 0xF

Decompression (Format 2)
● If a record starts with a byte 0xF0-0xFE then

it's in format 2
● Read history memory, add difference
● Concatenate with mantissa parts
● Keep resulting sign and exponent part in history

memoryi
0xF i diff
0xF 0xF

Decompression (Format 3)
If a record starts with a byte 0xFF then it's in
format 3
● Concatenate with mantissa parts
● Keep sign and exponent part in history memory

i
0xF i diff
0xF 0xF

Hardware Decompression Pipeline
● 6.4GB/s on FPGA(Xilinx Virtex-5, 240 MHz)

Shift
left

Shift
right

History
Buffer DFFDFF

update

256212

Evaluation
● Performance of scientific application

● Matrix multiplication on GRAPE-DR
● Fast Fourier Transform on cluster

● Compression ratio
● Compression speed

Data for Evaluation
● Compression ratio/speed depend on input
● Input from actual scientific simulations are

used
● Random input: bad case for compression

● Used same initialization as FT in NAS Parallel
Benchmarks

Hardware Configuration
● Accelerator System

● 2*Opteron 2.6 GHz
● 4 GB DDR
● Linux 2.6.12
● GRAPE-DR PCI-X

● Cluster
● CPU: 2*Xeon E5530
● 8-node
● 12 GB DDR3
● Linux 2.6.18
● Gigabit Ethernet

Speed Increase on Accelerator
● Matrix multiply on GRAPE-DR system

W
/O

 Com
p

W
/Com

p

0

2

4

6

8

10

12

Communications
GRAPE
OtherClo

ck [
G]

Input: scientific

9% faster

CPU Software
Compression

GRAPE-DR

Host
Bridge

 HyperTransport

PCI-X

Hardware
Decompressio
n

Speed Increase on Cluster
● FFT, 8*DP Xeon E5530, Gigabit Ethernet

w
/o C

om
p

w
/C

om
p

0

20

40

60

80

100

120

140

160

180

Transpose
Other

Tim
e [s

]

Input: random

9% faster

Computer
Computer
Computer
Computer

Computer

GbE
Switch

Software implementation

・・・

Software Compression speed
● 100x faster than LZMA

rho wfn
0

10

20

30

40

50

60

70

80

90

100

MAF
GZ
BZ2
LZMA

Input: scientific

Tim
e

(MA
F=1

)

Compression Ratio
● Better than GZ/BZ2

rho wfn
0

10

20

30

40

50

60

70

80

90

100

MAF
GZ
BZ2
LZMA

%

Input: scientific

(100x slow)

Evaluation: Summary
● Accelerates both accelerator and cluster
● Faster compression time compared to

conventional algorithms
● Compression ratio better than GZ/BZ2

Related Work
● Compression of FP numbers:

● For graphics [Jacob+, 08]
● Single-precision [Lindstrom+, 06]
● For disk and network [Burtscher+, 07]

● Ours is much faster, while retaining similar
compression ratio and complete precision

Conclusion
● Floating point compression is effective

● FFT, Matrix multiplication
● Exponent parts of FP numbers can be

compressed
● Fast algorithm for FP compression is proposed

● Both hardware and software implementations are
feasible

Get your copy of MAF compression utility at:
http://www-hiraki.is.s.u-tokyo.ac.jp/members/tomari/maf/

